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PREFACE

The material contained in this report comprises the dis-
sertation entitled "The Temperature Dependence of the X-Ray Debye
Temperature and its Relation to the Llastic Constant Debye
Temperature in Nickel and Iron-Nickel Alloys," presented by
Ronal¢ H, Wilson in partial fulfillment of the requirements for
the degree of "Doctor of Philosophy” at Rensselaer Polytechnic

Institute. This degree will be conferred in June 1964,
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ABSTRACT

A method for measuring the integrated intensity of Bragg
peaks reflected from the face of a large single crystal mounted on
a G. E. goniostat at temperatures from 100°K to 600°K is des-
cribed. In addition, an expression for correcting these in-
tensities for diffuse scattering is presented.

The method has been used on samples of pure nickel and
alloys of 29, 31, and 33 percent nickel in iron.. X-ray Debye
temperatures are calculated from the temperature variation of the
Debye-Waller factor: The temperature dependence of these Debye
temperatures is compared with the temperature dependence of the
Debye temperature calculated from the ultrasonic elastic constant
measurements of Alers, Neighbors and Sato (J. Phys. Chem. Solids,
13, 40, 1960).

It is argued that the temperature variation of the two
Debye temperatures should agree unless there are contributions to
the ultrasonic elastic constants which do not effect the thermal
vibrations measured by the x-ray techniques.

 Agreement is found for the temperature dependence in the
case of nickel in spite of the fact that the size of the Debye
temperature from the ultrasonic data is 478°K at room temperature
compared with 412°K obtained in this work. Other x-ray methods
(Simerska, Czech. J. Phys., 12, 858, 1962) have given about 405°K.
This agreement serves as a check on our method.

For the alloys the Debye temperatures calculated from the

vi



ultrasonic measurements of Alers et al. give a change in slope
from positive to negative in the Debye temperature versus temperature
curve as one goes from below the Curie temperature to above it. Our
X~ray measurements do not show this large change in slope. A
much smaller change in slope 1s observed.

;F is concluded that the interatomic magnetic exchange
energy, J, does not affect the elastic properties of these alloys
at the frequencies of the thermal waves important in the x-ray
measurementsgl Such an energy term was introduced by Alers et al.
to explain their ultrasonic measurements. This contribution seems
necessary to explain the difference between the shear constants
in the ultrasonic measurements. Therefore, it is proposed that
the effective J value in the ultrasonic measurements is a spatial
average of the magnetic exchange energy over the wavelength of the
ultrasonic waves; however, for the short wavelengths important in
the x-ray measurements this averaging does not smooth out the ef-

fects of disorder in the alloys. Thus, the magnetic effect is not

seen in the x-ray measurements.
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SECTION I
INTRODUCTION AND HISTORICAL REVIEW

The concept of a temperature related to the maximum frequency
of lattice vibrations in a crystaline solid was introduced by Debye
(1912) in his work on specific heats. This temperature, known as the
Debye temperature, is considered to be characteristic of a solid and
is a measure of what can be considered as a high temperature for a
given material. In his model Debye assumed the material to be both
continuous and isotropic and that the velocity of the thermal vi-
brational waves is independent of wavelength. The atomic nature of
the crystal was introduced by limiting the total number of vibrational
modes to three times the number of atoms in the crystal.

Born and von Karman (1912) attacked the problem of determining
the vibrational modes in a crystal directly. Subsequent workers
have made great progress in calculating the vibrational spectra of
crystals (Blackman, 1955; de Launay, 1956). Experimental methods
for determining vibrational spectra using x-ray and neutron scat-
tering techniques have been developed and used on a limited number
of materials (See a summary in Maradudin, Montrol and Weiss, 1963,
Section VII). These methods are difficult and are complicated by
uncertainties. However, these experimental and theoretical re-
sults do show that the Debye model does not give a good approx-
imation to the true vibrational spectra.

Although it is true that the Debye model is not a good re-

presentation of the crystal, the concept of a Debye temperature is
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still valid and useful. This 1s true because the Debye temperature
can be introduced into theory through the simple Debye model and
later can be evaluated as an experimental parameter which represents
an average over the true vibrational spectrum. Such experimental
Debye temperatures, their method of measurement, and their theor-
etical relationship have been reviewed recently by Herbstein (1961).

One of these experimental methods involves the measurement
of the intensities of Bragg peaks in the x-ray diffraction. These
intensities are attenuated by a factor known as the temperature
factor or the Debye-Waller factor. The expression for this factor
was first developed by Debye (1914) shortly after his work on spe-
cific heats. It was later corrected by Faxen (1918) and then
stated in its present form by Waller (1923). These early treat-
ments were classical but later quantum mechanical treatments
(Waller, 1928; Ott, 1935; Born, 1942 a,b,c) have verified the cor-
rectness of the classical treatments. The classical treatment will
be discussed in section III.

The x-ray Debye temperature, Czq, which appears in the
Debye-Waller factor is introduced through the Debye model. It can
be calculated in the Debye approximation with a knowledge of the
crystal lattice and the elastic constants of the crystal. The val-
ue of C% calculated from the eiastic constants will not neces-
sarily agree with the experimental walue of (ZL for several
reasons. One reason is that the true vibrational spectrum may

differ substantially from the Debye spectrum. Another is that the



elastic constants used in the calculation are usually obtained by
methods using frequencies much lower than the frequencies important
in the thermal vibrations measured by x~ray techniques.

On the other hand there are methods for calculating the vi-
brational spectra from the interatomic forces (Blackman, 1955;
deLaunay, 1956). These are much closer to the true spectrum than is
the Debye spectrum, However, the interatomic forces cannot in gen-
eral be calculated from first principles so that it is necessary to
evaluate them from elastic constant data. When this is done there
is still the possibility of errors due to a frequency dependence of
the elastic constants. For instance deLaunay (1956) distinguishes
between the contribution of the electron gas at ultrasonic fre-
quencies and at thermal frequencies.

Thus, the experimental value of Cl'can differ from the
value calculated from elastic constants for reasons other than dif-
ferences in vibrational spectra. This fact can obscure the inter-
pretation proposed by Blackman (1956) by which information about
the vibrational spectrum could be obtained from a comparison of the
calculated and experimental values of @&),.

However, there is another aspect of x-ray Debye temperature
measurements which can prove useful, i.e. its temperature dependence.
There is of course the explicit temperature dependence at very low
temperatures in the range T < ® /12; this temperature dependence
has been treated extensively by Blackman (1955). At higher temper-

atures the explicit temperature dependence is small (Blackman, 1955;



Kagan and Umanskii, 1962; Flinn et al., 1961).

There is a much larger temperature variation of the Debye
temperature which is due to the temperature dependence of the inter-
atomic forces. Zener and Bilinsky (1936) and Paskin (1957) have
presented theories which relate the temperature dependence of the
Debye temperature to the temperature dependence of the lattice con-
stants, i.e. to thermal expansion. The dependence predicted by
their theories is generally too low (see the results in Herbstein,
1961). This is not surprising since from the discussion by
Huntington (1958) it can be seen that the temperature dependence of
the elastic constants cannot be attributed entirely to thermal ex-
pansion.

A more direct approach to the temperature dependence of the
Debye temperature is to attribute it to the temperature dependence
of the elastic constants themselves. From the results in Herbstein
(1961) it can be seen that where good experimental values are
available the temperature dependence of the Debye temperature can
usually be attributed to the temperature dependence of the elastic
constants even when the size of the Debye temperatures obtained
from the two methods do not agree. This agreement is not sur-
prising if the form of the vibrational spectrum does not vary with
temperature since the size of the interatomic forces which determine
the vibration spectrum should have the same temperature dependence
as the elastic constants. Conversely, deviations from this agree-

ment could be interpreted as failure of one of the above conditionms,
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i.e. either the form of the vibrational spectrum changes with temper-
ature or the observed elastic constants do not have the same temper-
ature dependence as the elastic properties important in thermal vi-
brations. The possibility of such an interpretation makes the com-
parison of the temperature dependence of these calculated and ex-
perimental x-ray Debye temperatures a valuable procedure.

A case where such an interpretation can be applied is in the
iron~-nickel alloy system in the compositions containing about 30 to
45 percent nickel. In these compositions there is a magnetic con-
tribution to the elastic constants which causes a large change in
slope of the calculated (2‘versus T curve as the temperaﬁure goes
from below the Curie temperature to above the Curie temperature of
these ferromagnetic alloys.

In Section IT the details of this magnetic effect will be
presented. In Section III a development of the Debye-Waller factor
will be given to provide the theoretical basis for the interpre-
tation of the x-ray measurements. The experimental procedures for
measuring the Debye-Waller factor will be described in Section IV,
In Section V the results of our measurements on pure nickel will
be compared with previous work as a check on our procedures and
then our results for three irom-nickel alloys will be compared
with the results of ultrasonic elastic constant calculations. Fin-
ally, in Section VI the significance of this comparison will be dis-

cussed.



SECTION 11
THE MAGNETIC EFFECT IN THE ELASTIC

CONSTANTS OF IRON~-NICKEL ALLOYS

The anomalous temperature dependence of the elastic con-
stants of face-centered-cubic iron-nickel alloys is well known
(Guillaume, 1920; Chevenard, 1920; Engler, 1938; Bozorth, 1950,

p. 684). Above the Curie temperatures of these ferromagnetic ma-
terial the slopes of the elastic constant versus temperature curves
are negative with a fractional change of the order of(10)_4 per C°.
This is about the same as for most metals. Below the Curie temper-
atures the slopes are very different. Some of this behavior can be
attributed to the so-called AE ef fect which derives its name from
the observed change in Young's modulus, E, with applied magnetic
field. This effect is due to a stress induced change in the direction
of magnetization through either domain rotation or domain wall
motion., This effect is known to relax out at frequencies of about
(10)7 cycles per second (Mason, 1953) and is of no interest in the
present work.

There is an additional magnetic effect on the elastic con-
stants which is particularly evident in the composition range of 30
to 45 percent nickel. Alers, Neighbours and Sato (1960, hereafter
referred to as ANS) have measured this effect in a single crystal
sample by pulse echo ultrasonic methods. Their results are shown
Cc' = 1/2(c

in Figure 1 where C = ) and B = 1/3(c11+2c

€440 11712 127



Figure 1

Elastic Constants Versus Temperature
of an Iron—Nickel Alloy with 30% Nickel

Taken from Alers et al.
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8
i.e. the two shear constants and the bulk modulus respectively. They
claim an accuracy of better than one percent absolute, but their
results are much more accurate for relative values. It can be
seen that the effect is characterized by a marked change in slope
near the Curie temperature.

The cause of this effect is generally considered to be a
strong dependence of the magnetic exchange energy on interatomic
distance. This dependence manifests itself in other ways such as
an anomalously low coefficient of expansion (Masumoto, 1931; Owen
and Yates, 1937) and an anomalously high volume magnetostriction
(for references and discussion see Kouvel and Wilson, 1961). The
theory of ferromagnetism in metals is not developed well enough
to allow the calculation of this energy from first principles.
Therefore, experimental evidence is essential in understanding
the nature of this exchange energy.

Apart from any consideration of the cause of these magnetic
effects in the elastic constants we can calculate Debye tempera-
tures from the ultrasonic elastic constants measured by ANS. The
change in Debye temperature wversus temperature for their measure-
ments is shown in Figure 2 as calculated by Anderson's method
(0. L. Anderson, 1963: This method i{s illustrated in appendix F).
This behavior will be compared with the observed temperature
dependence of the x-ray Debye temperature of similar alloys in

Section V.



Figure 2

Debye Temperature Versus Temperature
Calculated from the Elastic Constant Values

of Alers et al.
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10
SECTION III

THEQORY OF THE DEBYE-WALLER FACTOR

The treatment given here will be similar to that found in
James (1954, ch. 5) except our treatment will include structures
other than simple cubic. 1In addition, the assumptions of the Debye
model will be introduced in a way to allow easy modification later.

We start with the Fraunhofer diffraction expression for an
array of scattering centers at positions 5; =r + gnwith scat-
tering power F which will contain the atomic scattering factor,
the polarization factor, the Thompson factor for a radiating
electron and the geometric structure factor. The scattered in-

tensity is then:

F22 Z exp[i kS-(20-1n)

1

I

Frzég ;g; GXTD[;'K‘;E"(j;" i;ni]
exXPliK S - (Un-Unm)] 3.

where € = 27/X with A being the wavelength of the radiation; S is
the scattering vector with magnitude 2 sin® where 26 is scattering
angle. When the Laue conditions are satisfied, i.e. at the Bragg
peak, then 6 = §, the Bragg angle and S = S, a reciprocal lattice

vector which is normal to the diffracting plane. We have used_x;n

as the equilibrium lattice position of the nth atom and u_as the

displacement of the nth atom from its equilibrium position due to
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thermal vibrations. The sum is over all the atoms of the crystal
that intercept the incoming beam.

We let
Pom = K S (Un— Ym) 3.2

and expand the last factor of equation 3.1 in powers of p Then

n,m’

taking the time average of this factor over a time large compared

with the period of thermal vibrations we find that the odd powered

terms average to zero because Pom is as likely to be negative as
’

it is to be positive. Thus, to a good approximation we can write

...L< 2 >
J:Pn,m — 2 Pn‘.m 303
e c
The problem then becomes one of finding the time average of pﬁ o'
?
To do this we consider u asa superposition of displace-
ments due to all possible thermal waves, so restricting the dis-

cussion to acoustic waves, we have
U, == € Gy cos(wfu‘t -kI,- 5,:4) 3.4

where k is a wave vector of magnitude 2n/A for a thermal wave of
wavelength A, Ekj is a unit vector in the direction of the dis-
placement of the atom due to the kth wave of polarization j (j is

one of the three independent directions of vibration), akj is the
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amplitude, aij is the angular frequency, and § is the arbitrary

kj
phase of the kjth wave.

Using equations 3.2 and 3.4 we have

2

P'zam - kZJ (¥S-&y) ak/[“5(%1‘!S'In*%)‘cos(%f‘./s"’; ‘%)} 3.5

When the time average is taken all the cross products between dif-

ferent k's and j's average to zero because §, , is random in time.

ks

Then since the time average of coszaft is one-~half, we have after

using a trigonometric identity to modify the last term

<Py =L Z (S _@k,)z(a;) P - cosfk (1, - z’m)z] 3.6

To obtain an expression for akj we use similar arguements

to get

{u®) =4 2k v 3.7

kj

from which the average total vibrational energy (twice the kinetic

energy) per atom becomes

E:-zimeJ<a,;>u);f 3.8

where m {s the mass of the atom. The total vibrational energy is

just the total number of atoms, ?77, times E. The total energy can
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also be written as the sum of the energies in each vibrational wave,

Ekj’ i.e. "')’)E:%‘Ekj Therefore,

(BT

But for a harmonic oscillator

Ep=*e, E* %/i-r__ T EL]: #ogy(n;+2)

from which we get

CORE

kJ
Using this and letting
2
G = A (*§‘§kj) (nkJ""éL)
k m CUI;J

we have

JERIy_ B G (et n)]

_5 ij ?J GI:J cas {l( - IM)}
e e

so that equation 3.1 becomes

3.9

3.10

3.1

312

3.13
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I-f e—ge‘;,- sz ez«_s'(n-fm) eg% cas k(Ta=Im) 3.2

Expanding the last exponential in a power series we can write

I:= I' -+ Iz + A:’gl,e»— order terms 3.15

where
_ 2 W7 Gij ZZ e"*-‘i'(fn_—m) 3./6

1; - f? e b m ’

and
2 G . jké}(f”‘j;
I=F % >56 & )Cos[k,m_fm)] 317
-z ij

I1 is just the Bragg intensity with e kj as the Debye-Waller

factor. 12 ié the one phonon diffuse scattering intensity. The
other terms give the multi-phonon diffuse scattering intensity.
(Maradudin et al., 1963, p. 249). The diffuse scattering will be
considered further in appendix A where corrections for its con-
tribution to the measured intensities will be derived. It is the
Debye-Waller factor for the Bragg intensity which is of interest
here.

The common notation is to write the exponent in the Debye-

Waller factor as 2M so that



2M = G;( 3.8
J

kJ

The first step in the Debye model is to replace the summation over
k by an integral. To do this we impose cyclic boundary conditions
on the crystal which we assume to be composed of N, by N

by N3 unit

1 2
cells respectively along the three lattice vectors. Cyclic boundary
conditions require a phase change of 2mp (p an integer) over the
dimensions of the crystal; for a cubic crystal with lattice parameter,
d, we have kiNidl- 2mp for 1 = 1, 2, 3. Thus, k takes on discrete
values for which we can construct a lattice of spacing Zw/NiG with
each lattice point representing a possible k value. For a crystal
with a large number of cells N = N1N2N3 and for k not too small the k
lattice may be represented by a continum with a density of lattice

points given by N<33/(2n)3. Therefore, the number of k values be-

tween k and k + dk is given by

dN = (N"f ATk dk 3.19

27)

However, since ij is a function of!xij we would like to integrate

over wJ so we introduce the isotropic phase velocity V =U/k and

the isotropic group velocity U = %%r for the thermal waves. Then

2

3 .
dN = 47N () o 42 3.20
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But the total number of k values per direction of vibration 1s equal
to the number of atoms in the crystal, ‘77 We now define a maximum

frequency for the jth polarization, 22 by

i
“nj 2
n :/JN = 4TTN(Z%)3O/ ___,:/J‘z‘{% de 3.21

Again assuming an isotropic medium we replace (KS - g_kj)z by its

isotropic average 1(282/3 and get

29
- 4 «'SH N/[a 3 W'nw,+-L 2
ZM-s-m'%59§[ffﬁﬁwd% 32

Finally, in the Debye model we assume V = U = a constant for all

frequencies. Using this assumption in equation 3.21 we get

47 afN / '

— 5,3
3 27T 77 sz{j L();'J‘ \3.23

which when substituted into equation 3.22 yields

«'S*Eh < | N
2M= ";n""‘? “{njo/(nw,/"LzL . oy 3.24

Now, letting vy -#w/gr and xj:fa;@- we get



2
¥ — 2 Pl
/(’L")""’W'(x)év,*lyjdy‘%‘,g—"} 325
where
X
Pe) = 5 -—}’—d—/’v- 3.26
o & —
so that
2 2
SA s_L fpx) 4
2M = ﬁm JZ@,fo +4} 327

where we have made @J:%w Equation 3.27 contains three Debye
temperatures, one for each vibrational direction. We define a single

x-ray Debye temperature, €, by

Plka), Pe),
@{ } 75 { X 4} 2%

Then noting that 4(282 = 16 ﬂzsinzolxz we have

ZM — ’Z*A SI‘;:.e @)_'; {¢ixn +_4L} 3.2(?

which is the usual expression for the exponent in the Debye-Waller

factor.
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SECTION IV

EXPERIMENTAL PROCEDURES

A. X-Ray Intensity Measurements

To measure the Debye-Waller factor as a function of temper-
ature it is necessary to measure the integrated intensity of Bragg
peaks at different temperatures (see Herbstein, 1961, p. 319).

There 1s a broad choice in experimental procedures for.making such
measurements, We have chosen to measure the integrated intensity
reflected from the face of a single crystal larger than the in-
cident x-ray beam. One important aspect of this method is that it
is possible to use the same samples bath in these measurements and
in the ultrasonic measurements. There are difficulties associated
with this type of measurement such as surface roughness and the lack
of perfect parallelism between the physical surface and the desired
crystalographic plane. These difficulties are minimized by the
choice of high angle reflections for the measurements. These high
angle reflections also tend to maximize the effects to be observed.

Thus, either the (800) or the (660) peak or both were
chosen for the measurements. With molybdenum Ku radiation these
fall at 20 angles of about 105° and 115° respectively.

Large grains in ingots prepared from vacuum melted mixtures
of high purity iron and nickel in the desired proportions were used.
The physical surface was ground and polished in a series of steps

until it was parallel to a (100) or a (110) plane of a large grain.



The parallelism was confirmed to within 2° by back reflection Laue

photographs. The final step was a chemical or electrical polishing

19

of the surface to remove material cold worked in the grinding process.

The samples were then cemented to 1/8 inch diameter glass
rods with Saureisen high temperature cement. The samples were po-
sitioned on the rods so that the polished surface could be adjusted
to the diffraction plane of a G. E. XRD-5 diffractometer when the
rod was inserted in a eucentric goniometer mounted on a G. E. gon-
iostat.

A take-off angle of about 2° was used with a G. E. CA-7 x-
ray tube. The beam collimator was that supplied with the G. E.
goniostat. The unfiltered beam was directed to the face of the
crystal and the reflected x~rays were counted with a scintillation
counter with pulse height discrimination. The counter window was
1.2 degrees wide and 2.4 degrees high. This window accepted the
full reflected beam.

After alignment, the sample was tested for crystal per-

fection with an cy motion scan. A symmetrical peak of full width at

half intensity of .6 degrees or less was the criterion for acceptance.

A 26 scan was chosen for the intensity measurements. The
scanning rate was .2 degrees per minute. A scan of about 3° was
required to include both the Kuf and the K&l intensities. Back~
ground was counted for 100 seconds at both the starting point and

the ending point of the 26 scan. Thus, the background corrections
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include the contributions of the white radiation and the harmonic
contributions from other peaks. (Young, 1961) The average of the two
background counts was multiplied by the total counting time for the
scan and this product was subtracted from the total count accumulated
during the scan. This difference was then the measured intensity to
which the diffuse scattering corrections ( appendicies A and B) were
applied to get the integrated intensity. The statistical counting
error in this procedure was less than one-half percent but the
total error is estimated to be about one percent to allow for un-
corrected fluctuations in the source intensity and counting sen-

sitivity.

B. Temperature Control and Measurement

For temperatures above room temperature the crystal was
heated by focusing light onto the crystal from a 500 watt DHJ pro-
jection lamp with an internal focusing reflector. The temperature
was adjusted by varying the voltage to the filament of the lamp.
The focal area of the lamp was large enough to include the entire
sample but small enough to avoid excessive heating of the gon-
iometer from which the sample was thermally insulated by the glass
rod,

For temperatures below room temperature the sample was
cooled by a stream of dry nitrogen gas which had been passed
through a copper coil immersed in a cryogenic bath. The stream of

nitrogen was directed onto the crystal through a special cryostatic
el
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tube with provisions for mixing warm nitrogen with the cold stream
to adjust the temperature. It also had an external jacket for direct-
ing a defrosting strgam around the cold stream.

The temperature of the sample was read by fine wire thermo-
couples cemented to the sample. The thermocouples were placed so
that they would show any significant thermal gradients across the
sample. The thermocouples were checked at high temperatures by
Tempilaq temperature indicating wax. The linearity of the temper-
ature measurements was established by comparison of the slope of
lattice constant versus temperature curves obtained in our measure-
ments with those of similar alloys reported by Owen and Yates (1937).

The estimated error in the temperature determinations at the

highest and lowest temperatures is plus or minus 5°.

C. Procedures

Before any intensity measurements were made on it the sample
was heated to a temperature higher than any subsequent measurement
temperature and held there about one hour. This formed a thin
oxide film on the surface of the sample which was not increased in
the subsequent measurements.

The intensity data were obtained in a series of runs start-
ing with room temperature measurements; then measurements at other
temperatures were made; finally, another measurement at room temper-
ature was made and compared with the first to serve as a check om

drift in source intensity or counting sensitivity.
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The intensity measurements were made after allowing the

sample to equilibrate at some temperature. The next step was to
search out the exact position of the peak. The half intensities
on both sides of the peak were found for both the ]C and z¢ motions
and then these motions were set at positions half way between these.
The changes in peak position for motions other than 26 were only a
few hundredths of a degree and could be attributed to slight shifts
in the crystal position due to the temperature changes. The changes
in 26 were due to the change in lattice constant with temperature
and were used to measure that change. Once the peak was found the
28 scan was made in exactly the same way for every temperature. The
scan range was chosen to be symmetrical with respect to the qu and
Km2 peaks. Temperatures were read throughout the measurement pro-
cedure and excessive drifts in temperature were a basis for throwing

out the intensity measurement.

D, Data Reduction

The first step in reducing the intensity data to a useful
form was to apply the corrections for diffuse scattering and for
lattice expansion as described in appendix B. The intensity can then

be written

-2M(T)
I(M=1I e 4.

where I, is the intensity that would be measured if all of the atoms
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were rigidly held at their equilibrium positions. From equation 3.29

_ 124" sne | [@0w |
2 M(T) @ﬂ[ +4}

m A bl X

A & { o) ;}'—] 42
M X

In our measurements I, is not known so our knowledge is restricted

I

to the intensity relative to the intensity IR at some reference

temperature TR'

]fR = ]:, EE;na /VLQ ‘¢':3

In our case TR = 298°K and IR was our room temperature measurement

empirically corrected to 298°K. Thus,

;2M0T) ~2M(T) +2Mg

I(m_ e -
IR - e—ZMR - € 44

from which we get

IM)— _2M(T)-2M
/n(IR)— ) R

or

2M(T) = = In (—%12) = 2/ 4.5
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If we knew &gf:éafa) we could calculate ZMR. With ZMR we could
calculte 2M(T) for each of the data points. From 2M(T) we can cal- .
culate @(T) Unfortunately, @ is not known so it is necessary
to assume a value of EQ in order to calculate @(T). However,
Chipman (1960) has pointed out that the low temperature (H)(7) values
calculated from equation 4.5 are very sensitive to the choice of @Zk.
This restricts the choice of C% to a narrow range if we require
physically reasonable ® versus T curves at low temperatures. Chip-
man successfully applied such a criterion in his measurements on
polycrystaline samples.

The above procedure of assuming a value for'(:% and calcul-

ating a C)(T) value for each measured intensity is applied to

measurements on our samples in Section V.
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SECTION V

RESULTS

Integrated intensity measurements were made over a range of
temperatures on four samples: pure nickel and nominal compositions
of 29, 31 and 33 atomic percent nickel in iron. A Debye temperature
was calculated for each of the intensity measurements by the pro-
cedures in Section IV-D, The results of these calculations are
shown for our measurements on nickel in Figure 3., Smooth curves
drawn through the experimental points are shown for three choices
of (:&. It can be seen that, except for a narrow range of choices
of C:k, the low temperature values would show extreme variations
which are inconsistent with any physical model., It should be noted
that the slope of the high temperature portions of the curves in
Figure 3 do not change much from one choice of (:k to another.

In Figure 4 is shown the change in Debye temperature for
nickel calculated from the elastic constant data of ANS. The re-
sult of our x-ray measurements and those of Simerska (1962) are
also shown in Figure 4. Error bars are shown indicating the ef-
fect of 1% intensity errors and 5°C temperature errors on our data.
The value of C} for our data was chosen so that our low temperature
data would be consistent with the low temperature elastic constant
curve. Simerska's values were obtained from the variation of Bragg
intensity with scattering angle; his room temperature value is about

405°K compared with our value of 412°K. This agreement serves as a



Figure 3

Debye Temperature Versus Temperature

from X-ray Measurements on Nickel
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Figure 4

Comparison of the Change in Debye. Temperature
Versus Temperature from X-ray and Ultrasonic

Measurements on Nickel
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check on our procedures. As can be seen in Figure 4, our values
fall on the curve from the elastic constant data within experimental
error. The room temperature value of ® calculated from the elastic
constant data is 478°K. This illustrates the agreement in temperature
dependence between the x-ray and the ultrasonic results despite
the disagreement in the size of ®&.

We now turn our attention to the alloys. Since the compo-
sition of our alloys was not exactly the same as the alloy measured
by ANS, it was necessary to estimate the effect of small composition
changes on the elastic constant data in order to make comparisons.
The most important factor in the relative position of the elastic
constant anomalies is the Curie temperature of the samples. However,
in these alloys the Curie temperature is not well defined and may
vary with the method of measurement. Fortunately, the lattice
parameter, ¢/, versus temperature curves also indicate the temper-
ature of these anomalies. This can be seen in Figure 5 where 44/4g
versus T is plotted for our alloys along with similar data from
ANS. These curves along with Curie temperature measurements made on
our alloys were used to estimate the temperature shift of the
magnetic anomalies in our alloys relative to the alloy of ANS. The
procedure for this and arguments to justify the minor changes in
the size of the elastic anomalies in our alloys are given in
appendix C,

Measurements were not made on the 29 and 31 percent alloys



Figure 5

Change in Lattice Parameter Versus Temperature
for Our Alloys and The Alloy of Alers et al.
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below room temperature because of the low temperature phase trans-
formation that occurs in these alloys. For that reason we will con-
centrate on the 33 percent alloy first. The solid curve in Figure
6 shows 484 versus T calculated from the elastic constant data
adjusted for the 33 petcent'alloy. The crossed portion of the curve
corresponds to a linear extrapolation of the ANS data into the low
temperature region. Based on the nature of the magnetic effects it
is expected that any deviation from this linearity should be an
upward curvature at the lowest temperatures. The dashed curves
show 4€/® versus T as determined from our experimental pointsfor
several choices of @%. The individual data points from which
these curves were determined are shown for only one curve to avoid
confusion. The curves are drawn to coincide at a temperature above
the Curie temperature because the magnetic effects should be small
there. As the temperature is lowered past the Curie temperature the
magnetic effects become large and show up as a large change in
slope in the elastic constant curve. It can be seen that a com-
parable change in slope does not occur in the x-ray data. It can
also be seen from Figure 6 that this conclusion is not sensitive to
the choice of @( Even the obviously low choice of @ for curve
a does not produce a change in slope comparable to that in the
elastic constant results.

On the other hand, the x-ray curves show a smaller but de-

finite change in slope near the Curie temperature. Thus, there



Figure 6

Change in Debye Temperature Versus

Temperature for the 33 Percent Nickel Alloy
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must be some manifestation of the magnetic effects in the x-ray
data. Possible explanations of these results will be discussed in
the next section.

The data for the 29 and 31 percent samples are shown in
Figure 7. These results are less definitive for two reasons. First,
the Curie temperatures are lower and therefore, the critical region
below the Curie temperature is in a temperature range which is
more sensitive to the choice of C%. Second, the lack of low
temperature data makes the choice of C% less certain. However,
the data for the 31 percent sample seem to support the conclusions
drawn from the 33 percent sample. The data for the 29 percent
sample are at least not inconsistent with those conclusions.

The differences in slope above the Curie temperature are at-
tributed to the persistence of some magnetic effects even above
the Curie temperature. This is readily seen in the curve for B

shown in Figure 1.



Figure 7

Change in Debye Temperature Versus Temperature

for the 29 and 31 Percent Nickel Alloys
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SECTION VI

DISCUSSION OF RESULTS

The difference in the temperature dependence of the Debye
temperature determined from ultrasonic measurements and x-ray mea-
surements must de discussed in terms of the essential differences
in the measuring process. The ultrasonic measurements were made
by applying a stress at frequencies of about (10)7 cycles per se-
cond. The x-ray results are determined by the displacements of
atoms from their equilibrium positions due to thermal vibrations;
these displacements are determined by thermal waves having fequen-
cies over a range around (10)12 cycles per second. Therefore, any
contribution to the elastic constants which contributes in one of
these frequency ranges and not the other would cause a difference
in the Debye temperature determined by the two methods. Further-
more, any stress induced contributions in the ultrasonic measure-
ments would not be measured by the x-ray techniques since the x-ray
measurements are virtually stressless.

It is also necessary to discuss the nature of the magnetic
effects in order to interpret our observations. In part A the
nature of the magnetic effects will be discussed. Then in part B,

the difference between the x-ray and the ultrasonic 49 yorsus T

®
curves will be discussed.
A. Magnetic Effects

The theory of magnetic exchange interactions which lead to

34
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coupling between the magnetic moments of atoms in a crystal has
recently been reviewed by Anderson ( P. W. Anderson, 1963). He
states that "it can be fairly said that most of the mechanisms in in-
sulators are at least qualitatively, and sometimes quantitatively,
understood, while the exchange question in metals is still almost
completely open." Nevertheless, the concept of an exchange energy
is frequently used in the discussion of the ferromagnetism of

metals and alloys. It is of the form (P. W. Andersom, 1963, p. 101):
V= ->J 55 61
4 v

where J,, is the exchange integral between electrons and S;

i3
is the spin of the ith electron. This is the basis of an inter-

atomic exchange energy J (Bethe, 1933) which is shown in Figure 8

as a function of interatomic distance normalized to the radius of the
d electron shell. This energy can be related to the Curie temper-
ature of ferromagnetic elements and used to qualitatively place the
elements on the curve in Figure 8 (Bozorth, 1951, p. 444). 1In the
case of a disordered alloy such a procedure is not possible because
different pairs of atoms would have different exchange energies and
would fall on different portions of the curve. This point of view

is adopted by Kondorsky and Sedov (1960) and by Kouvel and Wilson
(1961) in interpreting their measurements of the large pressure de-
pendence of magnetization in iron-nickel alloys of 30 to 50 percent

nickel. The placement of the different interactions in Figure 8 is



Figure 8

Bethe-Slater Curve
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taken from Kouvel and Wilson. In particular notice that the iron-
iron interaction in a face-centered-cubic lattice is taken as ne-
gative. This leads to the possibiliity that some iron atoms may have
a very small or even a net negative J value for some environment of
nearnest neighbors. As we have indicated, the meaning of such an
interatomic exchange energy in metals is not clear on theoretical
grounds. Qualitatively it seems justifiable in explaining the pres-
sure dependence of the magnetization in the alloys under discussion.
Furthermore, ANS (Alers, Neighbors and Sato, 1960) have used it
successfully in analyzing their ultrasonic measurements on these

__alloys. _They 1ntroduce the elastic energy as

E=E -4nz (I) J+) 6.2

where J(r) is the interatomic magnetic exchange energy, I/I, the

r

relative magnetization, z the number of nearest neighbors, N the
number of atoms per unit volume and E, the collection of all ener-
gles not related to the alignment of magnetic moments.

The second term in equation 6.2 is an obvious analogy with
equation 6.1 with Bethe's concept of interatomic exchange sub-
stituted for the electronic exchange integral. From equation 6.2 ANS

write for the two shear modulii and the bulk modulus

C=lend, =G (1)( g}'z +3% a#) 6.3
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Cl=ftee) = C - L (E (L7 ) o4

dr*

B.=|t+2c.) = BQ-%’!(I—I)Z 5 LT 6.5
- | :

where the subscript I denotes constant magnetization and the sub-
script O denotes the value in the absence of ferromagnetism. The
equilibrium interatomic distance is denoted by r,. These magnetic
terms are consistent with Fuch's (1936) expressions for nearest
neighbor interactions in face-centered-cubic materials.

 In their discussion they assume that ~— - -

which is important since the measurements are actually made at con-
stant magnetic field, H, and not at constant magnetization. The
second term on the right side of equation 6.6 is the so-called
Doring term in which the magnetization is changed by the applied
stress through the volume magnetostriction, w = gﬁ{.

On the other hand they argue that C; = C, and Ci = Cﬁ since
"it is a known fact that shearing distortions (spontaneous morphic
magnetostriction), which result from a changevin the spontaneous

magnetization, are small compared to the accompanying volumedistor-

tions (spontaneous volumemagnetostriction)."
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From their measurements ANS conclude that

9 ne
Moy dT - h722) (o) 2

2 dr = cm?

and

N[>

f;ai.z‘ :(.,m) (o) s

vpl

for their iron-nickel alloy.

On the basis of these values essentially all of the magnetic
effect in B is due to the Doéring term. ANS could not calculate the
value of the Doring term because they did not know the value of
dI/dH.  In appendix E we derive a different expression for the -
Déring term which can be calculated from available data. The values
calculated are consistent with the entire magnetic effect in B
being due to the Ddring term. To see the effect of the D8ring term
on the Debye température we remove the Ddéring term from B and give B
a negative temperature slope of 1.4 (10)_7 per C°. The resulting
%g? versus T curve can be seen in curve b in Figure 9. This is to
be compared with curve a in which all of the magnetic effects mea-
sured ultrasonically have been included.

The large uncertainties given by ANS for their values quoted
above come principally from the uncertainty in the volume depen-
dence of C and C'. This volume dependence causes some of the ob-

served change in slope due to the change in thermal expansion be-

low the Curie temperature. As discussed in appendix C it is pos-



Figure 9

__ Effect of Removing Different Magnetic Contributions
in the Debye Temperatures Versus Temperature

Calculated from Elastic Constants
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sible to attribute all of the observed change in slope in C versus
T to this volume dependence. 1In fact it is argued there that this
much volume dependence is to be expected in C. For C' the volumede-
pendence is expected to be much less; moreover, even a large volume
dependence of C' could not account for the positive slope observed.
Therefore, we attribute most of the change in slope of C versus T
to the volume dependence of C; we attribute most of the change in
slope in C' versus T to the magnetic term in equation 6.4. This is
consistent with the ANS results for dJ/dr and d2J/dr2.

To see the effects of these two factors on the Debye temp-

~ erature calculated from the elastic constants we have removed the

magnetic effect from C' an& éivéﬁ C'Véiﬁééééive slope'6f77'(1b)_7”'
per C° in curve ¢ of Figure 9. This leaves only the effects in C
to cause the change in slope in curve c; therefore, the change in
slope in curve ¢ can be considered as being due to volume effects
alone.

Curve d in Figure 9 is an extension of the high temperature
slope of curve ¢. The data points in Figure 9 are for the 33 per-

cent sample with @= 430°K.

B. Interpretation

From the preceeding discussion we see that there are three
distinguishable effects which contribute to the change in slope of the
€%§2 versus T curves calculated from the ultrasonic elastic con-

stants. One is the stress induced DOring term. Another is the so-
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called "intrinsic'' magnetic effect introduced by ANS and shown in
equations 6.3 - 6.5. The third is the dependence of the elastic
constants on volume which is only indirectly due to magnetic ef-
fects through the change in slope of lattice constant versus temp-
erature. The approximate effect of successively removing these ef-
fects from the elastic constants has been shown successively in
going from curve a to b to ¢ to d in Figure 9.

First let us consider whether or not the D8ring term would
be expected to contribute to the x-ray measurements. It is due to

stress induced changes in the magnetization which can be attributed

. to a dependence of J on interatomic distance. Therefore, it should

not be present in the stressless x-ray measureméﬁfé;”7ii”ié”éfgﬁéd”’"”"*f

by ANS that a similar effect does not exist in C and C' because
there is no volume strain involved in these shear distortions and
because the spontaneous morphic magnetostriction is small. However,
in a disordered alloy these arguments are not entirely valid. The
effect on C and C' can exist in a disordered alloy because a net
change in J for a given atom can take place in a shearing strain if
the nearest neighbors involved in the shearing strain about the atém
have a different value of dJ/dr. This change could cause the rever-
sal in the magnetic moment of some atoms and by statistical argu-
ments involving the relative number of atoms in a given environment
there could be a net change in magnetization so that the assumption,

= F IPY .
CI CH and CI CH used by ANS would not necessarily be valid.
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However, such an argument could not predict the observed difference
in the size of the magnetic effect in C and C' without using some
rather unfounded assumptions. Therefore, it does not seem reasonable
to attribute the observed magnetic effects in these shear strains
to stress induced magnetization changes. In fact, it is difficult
to explain the difference in the size of the magnetic contribution
in C and C' without invoking equations 6.3 and 6.4 as used by ANS.

Turning now to the volume dependence of the elastic constants
we argue that this effect should certainly appear in the x-ray
measurements since it is due to the volume dependence of the non-
magnetic terms in equations 6.3 - 6.5 and does not depend on the
nature of the magnetic effects. We see in Figure 9 that the data
for one choice of @% for the 33 percent alloy fits curve c rea-
sonably well. Thus, it is possible to attribute the observed change
in slope in the x-ray data for %g? versus T to the volume effect
alone.

Apparently the effects present in curve b of Figure 9
which are due to the magnetic effects in C' do not appear in the x-
ray data. Since we could not ascribe these contributions to C' to
stress induced effects then we must consider them as being fre-
quency dependent in order to explain the difference between the x-
ray and ultrasonic results.. To estimate the effect of such a fre-
quency dependence we have developed a simple model in appendix D to
treat a frequency dependent magnetic contribution to the elastic

constants. It serves two functions. First, it shows that fre-
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quency dependent elastic constants cannot account for a large neg-
ative curvature in the &) versus T data. Therefore, it cannot be
argued that a lower 6% value which gives such a curvature could have
been chosen. Second, it allows an estimate of the highest frequency
at which the magnetic effects could contribute to the elastic con-
stants. Using this model and comparing the data in Figure 9 with
curve ¢ we estimate that the intrinsic magnetic effects could not
be contributing at frequencies higher than one-tenth of the Debye
frequency. In the extreme case of allowing no volume dependence of
the elastic constants we compare the data with curve d and estimate
that the intrinsfic magnetic effects could not contribute at more

than three-tenths of the Debye frequency.
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SECTION VII

CONCLUSIONS

Reviewing the situation as presented in the last section we
see that it seems necessary to use an interatomic exchange energy, J,
in order to explain the ultrasonic elastic constant measurements
of ANS on an alloy of 30 percent nickel in iron. The meaning of such
an energy is not clear from the theory of ferromagnetism in metals.
This is especially true in the case of a disordered alloy such as
the one measured by ANS. There is evidence to indicate that the dif-
ferent elements in this alloy can have widly differing values of J.
In that case a single value of J appropriate for use in equation
6.2 must represent some sort of average of the different interatomic
exchange energies.

It is possible for this averaging process to be inherent in
the nature of the ferromagnetic interactions. This would imply some
sort of long range ferromagnetic interaction. Such long range
interactions have been postulated (see Paskin, 1960 and the refer-
ences therein) but are not established experimentally.

Alternatively, one might describe the averaging as being
some sort of spatial average over the wavelength of the ultrasonic
wave. This would be an average performed by the measuring process.

However, our x-ray data indicate that the magnetic effects in
equations 6.3 - 6.5 are not present in the high frequency, short

wavelength processes involved in the x-ray measurements. Thug, we
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infer that the averaging processes discussed above do not occur under
these conditions.

If the averaging is due to long range ferromagnetic inter-
actions we can conclude that the interactions do not respond at
these frequencies.

If the averaging is over the wavelength of the vibrational
waves we conclude that random fluctuations in composition make the
average meaningless for very short wavelengths,

In any case, we conclude that our x-ray data support the
point of view that, although the magnetic effect in the elastic
constants is not due to an intrinsic contribution to the elastic
energy of the kind propsed by ANS, the concept of some averaged
magnetic contribution to the elastic energy is useful in explaining

their ultrasonic measurements.
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SECTION VIII

SUMMARY

We have developed a technique for measuring the intensity of
Bragg peaks reflected from the face of a large single crystal over
a range of temperatures from 100°K to 600°K. An expression for cor-
recting the measured intenstities for diffuse scattering has been
developed.

These techniques have been used on nickel and iron-nickel
alloys to obtain the temperature dependence of the x-ray Debye
temperature for these materials. This temperature dependence has
been compared with the temperature dependence of the Debye temperature
calculated from ultrasonic elastic constant measurements. In the
case of the alloys the difference has been interpreted in terms of
the nature of the magnetic effect in the elastic constants.

It is felt that there are other materials where meaningful
comparisons of this type can be made. This is especially true
where the ultrasonic and x-ray measuremants can be made on the same

sample, Our x-ray techniques are suitable for this purpose.
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SECTION IX

APPENDICIES

APPENDIX A: Correction for Diffuse Scattering

It has long been recognized that the thermal motion which
causes the decrease in Bragg intensities in x-ray scattering gives
rise to background scattering known as the thermal diffuse scat-
tering. The basis for an analysis of this effect has been given in
Section III; the diffuse scattering is discussed there briefly. In
equation 3.17 I2 can be thought of as the scattering out of the Bragg
peak due to the absorption or emission of one phonon during the scat-
tering process. This scattering produces a diffuse peak under the
Bragg peak. The higher order terms are due to multi-phonon pro-
cesses and contribute to the general background with no significant

peaking. Therefore, we will be concerned only with I, since it may

2
contribute significantly to the measured intensity. I, must then

2

be subtracted from the measured intensity in order to obtain the
true integrated intensity of the Bragg peak.

This contribution has been recognized for some time, but
only relatively recently have corrections been applied for it.
Chipman and Paskin (1959) have derived a scheme for correcting for
this effect in polycrystaline measurements. Nilsson (1957) has
derived a method for correcting single crystal measurements for an
omega or moving crystal, fixed counter scan assuming no mosaic spread

in the crystal. Neither of these were applicable to the procedures

used by us. Therefore, it was necessary to develop a method for cor-
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recting our measurements for diffuse scattering.

The approximations we have used are similar to those of
Nilsson: first averaging the scattering over all directions in re-
ciprocal space and treating the average isotropically; then con-
sidering the counter window to have infinite height and allowing
the background subtraction to compensate for the approximation. We
have, however, improved on his method by allowing for the effects
of mosaic spread and beam divergence. In addition, we have in-
troduced a simpler scheme for the directional averaging which will
allow easier analytical comparison with the Debye-Waller factor.

We modify our notation of Section III by using j instead of

I to indicate the scattering per unit solid angle. Then

- J*S”(f;-—ﬁQ -
j=FfeNzz &5 o PR Y ks) A-l

is the Bragg intensity and

' Y,
Jo = ‘Ze‘mg G. 2= e =7 ) cos[/_i' n-f)]

= F &5 G, [ Voko-K)+ Yiks )] A-2

is the first order diffuse intensity. Here we have introduced the
interference function Y@(§) which is sharply peaked at S = S,. We

now replace the summation over k by an integration over k space
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using N :(_é%%? dk, dk, dk,. We are interested in the value of
j2 at a fixed value of S so the integration is performed at constant
S. The interference function is non-zero only at values of k such
that €S + k =S,. Therefore, the value of ij at this value of k

is the only significant contribution. Theintégration over the

interference function gives N(21r)3/c73 so we have
. 2 -2M ,,2 }
sk)=F e N JZ G'?j A-3

For k¥>> ﬁtqa which is valid near the Bragg peak at temperatures
where the diffuse scattering is significant, we can write from

equation 3.12

_ (5-& ) (n,+%)
kJ o

kJ
2 *§'§kJ)Z A-4

3

~ AT |
T om7 &

Then introducing the velocity of the thermal waves L{ = %J’
J

we get

\’

2
_ AT | (x5-e,. |
ij—r k :/z kL) A-§
kJ

N
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Then

M T l S. 2
=Pt g 20 s

At this point we will take the isotropic average by setting

— ¥'S'_ Jemisinte
[(«S ]averaged ove: 3 - 3 Al A—7

all directions

Then using
2 Ay A £23
= &L - f A"'2
v R zz m

er—ZM 4Nﬁ7_ sme 477‘ e A-9

This is the diffuse scattering into an elemental solid engle for a
given crystal setting.

Using an Ewald sphere of radius 2r/)\, we now construct a co-
ordinate system in reciprocal space which is centered at a Bragg
peak as illustrated in Figure 10. For small distances from the
Bragg peak the co-ordinates represent angular motions of the dif-

fraction apparatus so that distances in reciprocal space are 2w/A




Figure 10

Angular Co-ordinates Relative
to the

Ewald Sphere
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times the co-ordinated angle.

As shown in Figure 10, Yy corresponds to a rotation of the
crystal about the normal to the page such that y = 2 sinf8(w - ujb)
where & is the true angular rotation of the crystal. ‘f cor-
responds to the usual 26 motion of a diffractometer such that

f' = (26 - 26°)cose. n corresponds to a counter rotation or the
counter slit width. § is the motion perpendicular to n. The
direction normal to the page is the JC motion of the G. E. gon-
iostat which corresponds to rotation out of the plane of dif-
fraction or to the counter slit height. These form two orthogonal
systems rotated about JX by an angle 6.

To obtain the intensity of diffuse scattering collected at
any given counter setting we must integrate j2 over the solid

angle subtended by the counter window.

4:44 j,dndx A-10

Similarly for jl

/(', 34/4 J,d» dx A-1l

7

However, for a real crystal there is a range of angles for which a
crystal reflects because of the mosaic nature of the crystal. This
necessitates that the intensity scan cover this range; it also

means that the diffuse intensity at a given setting of the counter
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is an average over this range. A satisfactory approximation for

2
full §' width of the Bragg peak at one-half intensity. Using

this is to average i over a step function whose width, Ag, is the

2 (21

2
k™ = A)(§2+n2+12) this gives

= € =

.- Lo 4L dE 2 2 N 4TAT s/'n:e(zjll:)ﬁ A-12
af aq 3 Y

where

- L dx 4n 4§
B 7TA§ 444 (fl‘* 7L+Il> A‘/S

Thus at any given setting the intensity is

A= L F A+ A, A-14
where i, 1is a constant background contribution.

The total count € for a 26 scan after background subtraction is
= (24O [/ dta) L [y d0e) _ ; SO _ , S(8)
E=[A 2[4 428 o [1 48 - L L2- 4, L8 pys

where Q is the angular velocity of the scan and §(26) is the range
of the scan. The scan starts and ends where il is zero, so its
limits of integration may be extended throughout the zone of re-

ciprocal space. Then
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1+"z‘
SMQ cos© A -Q

e [1+aj A-16

By dividing the observed intensity by 1+ a one then
obtains the integrated count for the Bragg intensity E'.

To evaluate o we need

[, 2 A-17
E X

z

This can be calculated in one of three ways: directly from the

A F

polycrystaline elastic constants - Youngs modulus, E, and the shear
modulus, u; calculated from the single crystal elastic constants, by
the method similar to Anderson's (1963); or estimated from some
knowledge of the Debye temperature. For our work we used the

elastic constant data of ANS and the method of Anderson.
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Integrating to get B we used the limits - to +» for X;

=$’cose-—AJ. ton2=§cose+ég_ for n; and §1= ysine-ﬁ
2 2 2

to fz- fsine +§£for f, to get
B = &, [l 8 )= In (77T +

+ ft Dh(?;,‘f‘ 77:2'*§zz)_ /n(772+‘%z+52)]

+ % fin € o 2T =6, #1957

+ 77/[’”(61+p7:2*.§2)-/”(§z+’7:z"' Sczz)] A-18

We define

O‘-cose[[e Jo) - 3,,:(29] /M 856 A7

(26)
The expression for B is numerically integrated to calculate o.
The values of B at the background counting positions are averaged
in order to obtain Bb.
The other factors are straightforward. The values of O
for our work are illustrated in appendix F along with other cor-

rection factors.
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APPENDIX B: Correction for the Change

in Lattice Constant and Numerical Values for the.Total Correction

We shall here develop the expressions for the minor cor-
rections to be applied to the integrated intensities in order to
take into account the dependence of the integrated intensity on the
lattice parameter due to the change of lattice parameter with temp-
erature. These corrections along with the diffuse scattering cor-
rection from appendix A will be illustrated in detail for nickel.
The corrections for the other samples were obtained by the same
procedure and gave similar numerical values.

The integrated intensity from the face of a large mosaic
crystal is (James, 1954, ch. 2)

2 2z . 2
I6)= J ?7 ‘) ( > | +cos 26 ﬁezm(dr,.dma) e—zM(T)
MeC sn2é, n

—2M(T) B-1

where J is the incident x-ray intensity, A is the x~ray wave-
length, e is the electronic charge, ¢ the velocity of light, m,

is the mass of an electron,?v is the number of atoms per unit
volume, which is proportional to 1/(3'3 where d is the lattice
parameter, u {s the linear absorption coefficient which is pro-
portional to 1/c13, fn is the atomic scattering factor for the nth

atom in the unit cell and eo is the Bragg angle which is related
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to d by

A Z//AZ‘/‘/AZ‘*«OI

24q

SinG, =

where h, k and / are the Miller indicies of the Bragg reflection.

If AMd=g(T) - G(TR) is small, then

A(' + c05226g> - It cos“ 26, (4 cos 26, Sin26, -
sin 28, sin 26, | + cos 26

aQ

260529°>-’- e 44
+ Sin 260 an e

2
| +cos 26, Aa _P
Sin 26, e’ o B

o) 49 &

and

A(FY) = £ (£ fmy) 5° 42

)] 4 a
- flg 42 B-4

Then
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M= L[ +Er6-IEY

=IT.(T) [Hé J B-5

which is a correction which will allow us to treat Io as a constant.

In addition there is a similar correction in the exponent

OM = Aél-{%(ih;}'-}-_—Agu B-6

But A is proportional to sinze which is proportional to l/a 2 so

A= Am)[1- 24 B-7

and

—AM ¥ AR 2A¥ LR
G = € €

(/+2AW") AR P B-&

which is a correction which allows us to treat A as a constant.



60

Finally, applying all these corrections plus the diffuse scattering

correction to the measured intensities we get

. I.(7)
() (1+€42)(1+2 49 42)

1.(7)

— Ia(Tﬁ> e"‘A(TR) g B__q

If all these corrections are small, as they are in our case, then
they can be combined into a single factor, a + (e + 2Ay) AQ/Q,
which represents a fractional decrease in the measured intensity.
The corrections for the change in lattice parameter are
straightforward calculations from a knowledge of £, Ay, 60 and
of @ versus T. The Ay values can be obtained from the uncor-
rected experimental data. For our calculations the atomic scat-
tering factors as calculated by Freeman and Watson (1961) were
used. A weighted average of their iron and nickel values was
used for the alloys.
To calculate a we have from appendix A

0= i%f_nf_ s;:ja, (VZ;L‘,-)([;&’Y'B‘H?T

— 42% S/:iec & o T B-/0
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The value of 1( was determined from the same elastic constant cal-
culations as were used to calculate the Debye temperatures. Using

Anderson's (1963) notation we have

qk{ — _L____- + _éé;
B+%4 A4

For nickel at room temperature & = 2.656 (10)‘-12 cmzldyne.

In the case of the (660) peak of nickel the separation of
the Km1 and I(m2 peaks is 1.14 degrees in 26. Therefore, the 26
scan was from an angle below the Kal peak to 1.14 degrees plus
that angle above it so that the scan was symetrical with respect
to the Km1 and I(a2 peaks and the same o value was applicable to
both peaks. For the nickel sample the scan started 1.00 degrees
below the K01 peak so that the total scan range was §(26) = 3.14
degrees.

The parameters needed for calculating B are

A f = AF cos® = Adw sin26 = .60 anllf’z .26

A)7 = .20

Then to get ¢ we numerically integrate B between the limits

f, =-/00 cos89°=-,5/

$£.= 2.1/4 cos&§9°= /.10
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to get

9
/54; = .0859
5,
Then using

66 = "65" +6"’° = 0298

2

and

5;": 2.14 605596: /&l

we have

g =.0859 —. 0477 = .0382

and for room temperature
a :&72 (/o)"‘)(/. 763 (/0)27(2,656 (9 '2)(0382)(300): 030

The values of & versus T calculated for the (660) peak of nickel
are shown in Figure 11.

For the (660) peak of nickel



Figure 11

Intensity Correction Parameters
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€ = (5. +€z—-3> :(-4.0+/.4—3> =-3.6

Using the observed Ay and A@/a we calculate the values shown in

Figure 11 for the lattice parameter corrections. The sum of the

two corrections which represents the total correction is also

shown in Figure 11.
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APPENDIX C: Adjustment of Elastic Constants

for Composition Changes.

As indicated in Section V the composition of our alloys
was different from that of the alloy measured by ANS. To find the
appropriate behavior of the elastic constants of our alloys it is
necessary to shift the break in the slope according to the location
of the Curie temperature for each alloy. In addition there is the
possible composition dependence of the size of the change in slope.
The shift in Curie temperature is determined by the observed lattice
parameter versus temperature curves and is accomplished quite ac-
curately. The largest composition change is about 2 percent for
the 33 percent sample based on the shift in Curie temperature.
Available data from the literature are used to show that the com-
position dependence of the magnetic effect is small in this com-
position range so that the size of the change in slope of B and C'
is quite justifiably kept constant for all samples. For C it is
shown that the observed change in slope is nearly all due to the
change in slope of @¢ versus T. This is consistent with the mag-
netic effects and with the temperature dependence of C in other
materials. Therefore, the change in slope of C for the different
compositions was determined from the observed q versus T.

To determine the shift in Curie temperatures for each alloy
the Curie temperature éf our samples were measured by an AC sus-

ceptibility method on apparatus made available to us by Carl
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Rosner of the General Electric Research Laboratory. For the 29,
31 and 33 percent samples the Curie temperatures are 367, 438, and
466°K, respectively. Then using strictly empirical arguments, we
compared these with the extrapolated intersection of the 4a/q versus
T curves of Figure 5. The location of these intersections is cer-
tainly related to the Curie temperature since the curvature of
these curves is due to the magnetic effects. These intersections
are 45, 36, and 35 degrees less than the respective Curie temper-
atures. The intersection of the curve for the ANS sample is 365°K.
This is about half way between the 29 and 31 percent samples, so
we estimated that the Curie temperature for their sample is 41
degrees above 365°K, i.e. 406°K. This value is lower than that
estimated by ANS but it is not inconsistent with their data and
should be within 5 degrees of the Curie temperature measured by the
same method as our alloys. Since it is the relative change in
Curie temperature in which we are interested, these values give a
good basis for determining this shift in Curie temperature.

There are several experimental indications which indicate
that the magnetic effects in the 33 percent sample are at least as
great as in the ANS sample. One of these is the lattice parameter
versus temperature data in Figure 5 which shows a greater effect in
the higher nickel alloys. This effect is known to peak at about 36
percent nickel. (Masumoto, 1931). Another is the Youngs modulus
data of Guillaume (1920) which shows a broad maximum in the pos-

itive E versus T slope at compositions centered about 35 percent
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nickel. The isotropic shear modulus appears to behave in a sim-
ilar way. (Clark, 1962). Thus, it seems to be a reasonably con-
servative estimate to assume the same size magnetic effect for B
and C' in the 31 and 33 percent samples as in the ANS sample. It
is somewhat liberal to assume the same thing for the 29 percent
sample. However, this sample plays a minor role. For the effect
on the elastic constant C a more exact estimate of the composition
effect can be made. This is due to the small size of the ex-
plicitly magnetic effect in its temperature dependence. The change
in)slope is seen to be much less than in B and C' and can nearly i
all be attributed to the change in slope in lattice parameter

versus temperature. To do this we use

dc _ 3¢, ¢ v oC | 2 34 2a)
dT 7 5T TS0 3T T oor  ov T AT

aC
where v is the specific volume. 1If we make 5T 0 then we can cal-
culate %%_ from the linear portion of the curve above the Curie
temperature and use this and measured values of A@/a versus temper-

ature in

o C Aa
= + -
C=0C, 30 3 » C-2

to construct a C versus T curve. This nearly coincides with that
aC
measured by ANS. The assumption that Fy = 0 is justified on

theoretical grounds (Huntington, 1958, p. 330). Moreover, using
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C/C: 2C + 2C Jp v
d T oT op du OT

C-3

and the data given by Huntington (1958, pp. 274, 322, 324) to cal-
culate —g—% we find that it is zero within experimental error for
most of ‘the materials for which adequate data are awailable.

Thus, it seems justifiable to use the procedure des-

cribed above to calculate C versus T on the basis of the measured

Aa/q versus T of our alloys.



APPENDIX D: Model for Introducing Frequency Dependent

Elastic Constants into the Debye-Waller Factor. .

To obtain a qualitative picture of how frequency dependent
elastic constants would effect the Debye-Waller factor and through
it the experimentally determined x-ray Debye temperature, we in-

troduce a simple model for this frequency dependence. The qual-

69

itative picture should not be sensitive to the details of the model.

In Figure 12 is shown the frequency versus wave vector for

our model. Up to some wave vector k there is a constant phase vel-

ocity, V1, which is equal to the group velocity. At larger wave
vectors there is a different phase velocity, V2, which is equal to
the group velocity in that range. The frequencies 1231 and wEde—

fined by the figure are seen to be related by

VT V.

Using equation 3.21 from Section III we obtain this model

W WL D -1

- 3
_ 4TN /[a 2
77 = 27 = Jev
/ vru

_ 47N cz)p e, w./w[ uoj D-2

which gives
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Figure 12

Dispersion Curve
for

Modified Debye Model
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3

Inserting this in equation 3.22 we have

2M: j;ﬁsz 3(5\/::)3 =/ D-4

where using procedures similar to Section III

D - z(i:+-7f)wdw ( )ﬁwegl-r-/

VEU

¢CX> ¢(xm) ] wz[ xa_g D-5
4?
which gives

= -},—n’?’f s’ JZ[;QM[O)’(Z”)+%7+
( )[_L dx) _tj (Cf\)[;g 99, | ﬂ}




72

12 4* s/nze (xm) .L
mAb )

_,__F _L ¢(X) 47’) ¢(Xt) ]}

following Section III. We have introduced a parameter f defined by

@2 = ‘F@m or W, = ‘me

——

-~

which is a measure of where the change in elastic constants occur
relative to the cutoff frequency. The experimental Debye temp-

erature in this model is then defined by

L (B, 1) = L[S,
@ x, 1 N

¢(X:) ¢(X\. 1 -
""C@x#)észLW) 07

Applying this to the iron-nickel alloys we make @,:-F@ where

@? is the Debye temperature calculated from the elastic con-
stants when the magnetic effects are included; then @z= 'F@‘
and @ﬂ:@“ where @A is the Debye temperature calculated
from the elastic constants when the magnetic affects are absent.
The value of @1 was then calculated by this method over the
temperature range of interest for several values of £. The re-

sults are shown in Figure 13.



Figure 13

Debye Temperature.Versus Temperature
for the Modified Debye Model
Applied to the 33 Percent Nickel Alloy
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APPENDIX E: Alternate Form of the Dd8ring Term

From the definition of the bulk modulus B we have for

constant magnetization, I,

1l _ v )
BI_QPL_ E-]

where v 1is specific volume, p is pressure and 0 is magnetization

per unit mass. At constant field, H,

1 dv
S E-2
By I P Iy

But we can write

E;f_f_/:_éz +9_Z/_g_q: F-3

Combining equations E-1 through E-3, we get

L _ L -2 _az/
& B afL P ly E-4

We can write

o U PR, U DT
iy = maiaton + —————— Dt -
o7 aTL@ oT T E-3

Selving this for -g—gand substituting into equation E-4, we get
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o T
AN
- = (?BCI'E;;;?<3Ca) ) /H E?-GS
o,

where a is the coefficient of linear expansion of the ferromagnetic
material and a, is the coefficient of linear expansion in the

absence of ferromagnetism.

Using
2T _ _L2Y ~ _g gy 2 ]
op T P2 700 G EV7

from ANS data. Also from their paper

-5 I
x-x, = —/2 (o) pY
at room temperature. The value of a, used was their o observed

above the Curie temperature. From the data of Kouvel and Wilson

(1961), we estimate

0T - emu_
B .3 Co

SO



R -, 16 (o)
B, B, dyne
Using the data of ANS we get
2
L N S T R
B B dyne
extrapolated observed

Thus, it is reasonable to attribute the magnetic effects

the Ddring term.

in B to
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APPENDIX F: Calculation of Debye Temperatures

from Elastic Constants

In our notation the Debye temperature in the Debye approx-

imation is given by
4 13 2Y5
= — (=2 LU -
® %Gﬁ)a”’ P

which follows from equation 3.23. Here U

/y 1s the isotropic

average velocity of the vibrational waves. We let

%:\j:/;—ﬂ F’Z

where P is the density and u,. is an average elastic constant

given by

A1 = A ! - _éé— F:'-:g
Ao 3 BH.;.?/{‘ P

for the x-ray Debye temperature. (The specific heat Debye temper-
ature involves a different average over the longitudinal and trans-
verse elastic constants.) Following Anderson (0. L. Anderson, 1963)

we use

B, (8 *8,) F-4
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and
4 = 5 (4 4) i

where the R and V subscripts refer to the Reuss and Voight iso-
tropic averages of the elastic constants (Huntington, 1958, p.

317) given by

_
Box B, = % (carzen) oy
3
/0\/ =3L-(c,,-c,z+)zfm) :EL.(ZCI+ 3C) F“?
R _
SAREEE T - s L
Cl

for cubic crystals.
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